

Emerging Technologies to Improve Accountability and Safeguards

Jessica White-Horton, Oak Ridge National Laboratory

Overview

- Nonproliferation Concerns/Safeguards Challenges
- Next Generation Safeguards Initiative
 - 5 Year Program
- Technology Assessment
- Stakeholders Meeting, April 2014

Nonproliferation Concerns

- Approximately 20,000 cylinders are in active circulation at any time
 - Each cylinder can contain ~50 kg of ²³⁵U equivalent to 2 significant quantities (SQs) of Highly Enriched Uranium (HEU)
 - No single listing of all UF₆ cylinders being used around the world
 - No industry-wide standard for uniquely identifying cylinders
- Not all Low Enriched Uranium (LEU) is under IAEA safeguards when produced & shipped
 - Nuclear Weapons State
- Enrichment capabilities (declared and clandestine) have increased in the last decade
- A small clandestine enrichment facility with a capacity of 10,000 25,000 SWU/year could convert:
 - Contents of a 48Y cylinder containing natural UF₆ into an SQ of HEU in ~3 months − 1 year
 - Contents of a 30B cylinder containing LEU (~3-5% enriched) into an SQ of HEU in ~30-90 days

International Safeguards Challenges

- Inspector time expended locating and identifying cylinders on-site
 - Resource intensive for inspectorates and the operator
- Inconsistent use of cylinder IDs across industry
 - Multiple site-specific IDs, plus cylinder pressure vessel IDs, multiple ID formats, multiple ID locations, making it difficult for an inspector to record the correct number
- Inconsistent application of cylinder IDs across industry
 - Increases likelihood of error in reading and recording IDs
 - Limits ability for IAEA to automate on-site inspection tasks and to efficiently match transfers
- Timely detection of diversion and facility misuse
 - Detecting diversion of a cylinder before a SQ of HEU can be produced
 - Detecting undeclared production pathways (using undeclared cylinders)

NGSI UF₆ Cylinder Project Plan

- Multi-lab team kicked off 5-year project in April 2011
 - Define the challenges to be addressed before proposing solutions
 - Focus on COTS/GOTS technologies where possible
- Project plan includes six tasks with "off-ramps" along the way
 - Baseline problem definition complete
 - Develop preliminary concept of operation for an identification & monitoring system complete
 - Determine technology requirements and identify available technologies
 in progress
 - Develop preliminary cylinder registry concept in progress
 - System integration
 - Demonstrate proof of concept of key components

Fundamental Components for the Proof of Concept

Overlapping Benefits

Operators

Inspectorates

- Improved process controls
- Consistent paperwork& improved reporting
- Eliminates need for multiple markings

- Less confusion about multiple markings
- Fewer transcription errors
- Quicker/more efficient inventory
- Reduced radiation dose

- Higher confidence in identifying cylinders
- Improved capability to identify diversion or undeclared material
- Easier to reconcile transfers between countries

Technology Assessment Results

- No current technology meets all requirements
- Hybrid approach
 - Two technologies offer everything but authentication
 - Bar codes
 - Radio frequency ID (RFID)
 - Facilities do not need authentication / tamper indication
 - Safeguards needs authentication / tamper indication
- Recommendation
 - Rugged bar codes + authentication measure

Requirement Highlights

- Read ID from 1 ft (0.3 m) up to 20 ft (6.1 m) at up to 20° off normal
- Minimum 10 year design life
- Costs less than \$300 (US) per cylinder
- ID number readable without a reader unit (5 to 30 feet)
- Can be applied at cylinder fabricators, enrichment plants, and fuel facilities
- Application does not affect cylinder certification

Requirement Highlights (cont.)

- Cylinder ID shall withstand external and operational environments
 - Normal weather for 10 Years
 - Functional from -25° F through 140° F
 - Withstand 100 cycles between -60° F and 250° F with 96 hrs at -60° F and 250°
 F
 - Indirect lightning effects
 - Withstand 50 ppm hydrogen fluoride at 90° F and 90% humidity for 96 hrs
 - Withstand shock of 1.2 m UF₆ cylinder drop
 - Functional when exposed to 50 mrem/hr radiation field for 30 days
 - Undamaged by or readily protected from cylinder painting, resurfacing, and cleaning that is performed at a nominal 5-year interval

Requirement Highlights (cont.)

- Tamper indicating / counterfeit resistant
- Operation shall not violate site safety / security
 Requirements
- Reader module size permits monitoring stations and readers
- Technology easy to use
- Accuracy and reliability of 99.9%

Potential Authentication Technologies

- Discussions with the IAEA indicate that there are a number of technologies that merit closer consideration for authentication purposes, including:
 - Glass bead, secured with wire and verified by camera
 - Thin glass plates, epoxied and verified by camera
 - High frequency RFID, embedded

Using Intrinsic Signature of a Weld

- The JRC developed the Laser Mapping for Container Verification (LMCV) to ensure cask lids have not been opened after welding.
- The IAEA will implement this technique in Canada to enhance cooperation and reduce efforts and costs.

Stakeholder's Meeting: Background

Meeting location and date: Washington DC, April 29-30 ~35 attendees

- Industry
 - Areva
 - Cameco
 - EDF
 - INVAP
 - NAC International
 - Urenco
 - Worthington
- Regulators
 - CNSC
 - NRC

- DOE/NNSA
 - NNSA
 - Nonproliferation R&D
 - Nonproliferation & International Security
 - National Laboratory Staff
- Inspectorates
 - IAEA
 - Department of Safeguards-Operations C
 - Department of Safeguards-Technology and Systems
 - ABACC

Topics of Discussion

- Nonproliferation concerns and challenges
- NGSI preliminary concept of operations
- Existing industry cylinder ID monitoring requirements and practices
- Technology survey and assessment
- Future industry engagement
- Benefits for industry
- Global Cylinder Identification & Monitoring System's (GCIMS) registry concept

Stakeholders Meeting: Meeting Objectives

- Pursue a shared understanding among stakeholders
 - Operational practices and regulatory considerations
 - Current industry initiatives
 - IAEA interest in project
 - Potential benefits of standardized UF₆ identification
- Solicit stakeholder feedback on NNSA efforts
 - Preliminary concept of operations
 - Technology requirements & assessment criteria
 - Technology assessment results
 - Preliminary registry concept
- Discuss path forward and future engagement

Stakeholders Meeting: Meeting Outcome

- Pursue a shared understanding among stakeholders
 - IAEA and Industry are both interested in a system that could reduce inspector burden
- Solicit stakeholder feedback on NNSA efforts
 - Growing interest in a uniform format
 - Lingering questions regarding both the upfront and maintenance costs
- Currently no show stoppers associated with the concept expressed at the meeting
- Discuss path forward and future engagement
 - Facilitate industry discussion of how to best identify cylinders
 - Creation of Industry Working Group (potentially through WNTI's HEX working group)
 - Need to determine how to do authentication in a pratical, cost-efficient manner
 - Continue close engagement of with industry and IAEA stakeholders to ensure that the requirements of all are met
 - Plans for the NNSA to hold a workshop with stakeholders following working group's initial meeting

Thank You!!

- Jessica White-Horton
- whitejl@ornl.gov
- **•** (865) 574-1075

